https://commons.wikimedia.org/wiki/File%3A%D0%9A%D0%BD%D0%B8%D0%B3%D0%B0_2.png
Contents
Molecular algebra. 1
1. Molecular set. 1
1.1.Primary structure. 2
1.2.Molecular interaction. 2
1.3.Valence and definitions. 3
1.4 Matrix conceptions of the complex molecules. 5
1.5.Coefficient many connectivity K, and ring in the complex molecules. 6
2. The structure and form. 7
2.2.Molecular basis. 9
2.3.Degrees freedom t.-m. and c.-m. 10
2.4.Structural group c.-m. 11
3. Scheme of the inscription. 14
3.1.Simple molecules. 15
3.2. Decomposition Ak on s.-m. 20
3.3 Optimization Ak on the s.-m. 28
3.4 Codons, heterocycles and other. 31
3.5.About "Golden section". 32
4. Properties set Ak. 33
4.1.Methods for analyzing sequence Ak. 33
4.2.Molecular set on the prism. 38
Molecular algebra. 1
1. Molecular set. 1
1.1.Primary structure. 2
1.2.Molecular interaction. 2
1.3.Valence and definitions. 3
1.4 Matrix conceptions of the complex molecules. 5
1.5.Coefficient many connectivity K, and ring in the complex molecules. 6
2. The structure and form. 7
2.2.Molecular basis. 9
2.3.Degrees freedom t.-m. and c.-m. 10
2.4.Structural group c.-m. 11
3. Scheme of the inscription. 14
3.1.Simple molecules. 15
3.2. Decomposition Ak on s.-m. 20
3.3 Optimization Ak on the s.-m. 28
3.4 Codons, heterocycles and other. 31
3.5.About "Golden section". 32
4. Properties set Ak. 33
4.1.Methods for analyzing sequence Ak. 33
4.2.Molecular set on the prism. 38
Molecular basis (MB) can be represented in the form of two parts, separated by three lines (Ris2.5): A, B, C. Part MB between the lines A and B contains voids: & and τ. Part MB between the lines B and C contains voids: ξ and θ. Thus the form of S.-M. described independent parameters: A, K, &, θ. Magnitude: B, ξ depend directly on K and nT. A = 0 only for ring C.-M. A = 1 for all other forms including and ring. For all the amino acids A = 1, and for ATGC, ribose (RI), dezoksirbozy (DRI) A = 0. Uniform unknown parameters: &, θ can be found from the system of equations.
The essential point in the study of Ak is a structural division of the latter into two component parts: the base and the radical. On the example of Ak Alanine (see. Fig. Alanine) can be illustrated by the use of the conditional division. The base consists of a 5-that is, N = 5 m and equal to the proton mass 39: M = 39. It can be assumed constant Ak. The remainder of Ak is radical. That is, the number m of the radical Ak Alanine - nTR = 1, mR = 9. Special role in the structure of Ak plays T. th CH3-2 with serial number 6. Last T. th may be part of a 2-ek-ek and 3 radical, and may not be included. All this is determined by the number of T. th and structure Ak. If the 6-m-TA I Ak is a part of the radical, then Ak refers to the group S, Ak otherwise refers to the group a. In the case of single alanine T. th radical can not represent any 2-nuts, or 3-ek. Therefore Ak Alanine and refers to the group. Noted property Ak can be represented as a kind of symmetry. Moreover, the base can be omitted Ak and study of the characteristics of a radical of one of the symmetries: a or s. In what follows, for Ak as structural coefficients will be used a new set Ak (Ec, nT, α, φ) or Ec. (Α, φ) / nT, where Ak -φ ring will be described by positive numbers - φ = K + 1 and α - number of hydrogen atoms in Ak.
Оглавление
Молекулярная алгебра. 1
1.Молекулярное множество. 1
1.1.Исходные
структуры. 2
1.2.Молекулярное
взаимодействие. 2
1.3.Валентность и определения. 3
1.4.Матричное представление с.-молекул. 5
1.5.Коэффициент много связности K и кольца в с.-молекулах. 6
2. Структура и форма. 7
2.2.Молекулярный базис. 9
2.3.Степени свободы т.-м. и с.-м. 10
2.4.Структурная группа с.-м. 11
3.Схемопись. 14
3.1.Простейшие молекулы. 15
3.2.Разложение Ак на п.-м. 20
3.3 Оптимизация Ак по простейшим. 28
3.4 Кодоны, гетероциклы и другое. 31
3.5 Про «Золотое сечение». 32
4. Свойства Ак последовательностей. 33
4.1. Методы анализа последовательностей Ак. 33
4.2 Молекулярное множество на призме. 38
http://www.appp.org.ua